Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Behav Brain Res ; 400: 112995, 2021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33301815

RESUMO

BACKGROUND: There is growing recognition for a reciprocal, bidirectional link between anxiety disorders and obesity. Although the mechanisms linking obesity and anxiety remain speculative, this bidirectionality suggests shared pathophysiological processes. Neuroinflammation and oxidative damage are implicated in both pathological anxiety and obesity. This study investigates the relative contribution of comorbid diet-induced obesity and stress-induced anxiety to neuroinflammation and oxidative stress. METHODS: Thirty-six (36) male Lewis rats were divided into four groups based on diet type and stress exposure: 1) control diet unexposed (CDU) and 2) exposed (CDE), 3) Western-like high-saturated fat diet unexposed (WDU) and 4) exposed (WDE). Neurobehavioral tests were performed to assess anxiety-like behaviors. The catalytic concentrations of glutathione peroxidase and reductase were measured from plasma samples, and neuroinflammatory/oxidative stress biomarkers were measured from brain samples using Western blot. Correlations between behavioral phenotypes and biomarkers were assessed with Pearson's correlation procedures. RESULTS: We found that WDE rats exhibited markedly increased levels of glial fibrillary acidic protein (185 %), catalase protein (215 %), and glutathione reductase (GSHR) enzymatic activity (418 %) relative to CDU rats. Interestingly, the brain protein levels of glutathione peroxidase (GPx) and catalase were positively associated with body weight and behavioral indices of anxiety. CONCLUSIONS: Together, our results support a role for neuroinflammation and oxidative stress in heightened emotional reactivity to obesogenic environments and psychogenic stress. Uncovering adaptive responses to obesogenic environments characterized by high access to high-saturated fat/high-sugar diets and toxic stress has the potential to strongly impact how we treat psychiatric disorders in at-risk populations.


Assuntos
Ansiedade/metabolismo , Ansiedade/fisiopatologia , Comportamento Animal/fisiologia , Dieta Hiperlipídica/efeitos adversos , Medo/fisiologia , Inflamação/metabolismo , Obesidade/metabolismo , Estresse Oxidativo/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Estresse Psicológico/metabolismo , Estresse Psicológico/fisiopatologia , Animais , Biomarcadores/metabolismo , Catalase/metabolismo , Modelos Animais de Doenças , Proteína Glial Fibrilar Ácida/metabolismo , Glutationa Peroxidase/sangue , Glutationa Redutase/sangue , Masculino , Ratos , Ratos Endogâmicos Lew
2.
Brain Behav Immun ; 70: 96-117, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29428401

RESUMO

BACKGROUND: Post-traumatic stress disorder (PTSD) and obesity are highly prevalent in adolescents. Emerging findings from our laboratory and others are consistent with the novel hypothesis that obese individuals may be predisposed to developing PTSD. Given that aberrant fear responses are pivotal in the pathogenesis of PTSD, the objective of this study was to determine the impact of an obesogenic Western-like high-fat diet (WD) on neural substrates associated with fear. METHODS: Adolescent Lewis rats (n = 72) were fed with either the experimental WD (41.4% kcal from fat) or the control diet. The fear-potentiated startle paradigm was used to determine sustained and phasic fear responses. Diffusion tensor imaging metrics and T2 relaxation times were used to determine the structural integrity of the fear circuitry including the medial prefrontal cortex (mPFC) and the basolateral complex of the amygdala (BLA). RESULTS: The rats that consumed the WD exhibited attenuated fear learning and fear extinction. These behavioral impairments were associated with oversaturation of the fear circuitry and astrogliosis. The BLA T2 relaxation times were significantly decreased in the WD rats relative to the controls. We found elevated fractional anisotropy in the mPFC of the rats that consumed the WD. We show that consumption of a WD may lead to long-lasting damage to components of the fear circuitry. CONCLUSIONS: Our findings demonstrate that consumption of an obesogenic diet during adolescence has a profound impact in the maturation of the fear neurocircuitry. The implications of this research are significant as they identify potential biomarkers of risk for psychopathology in the growing obese population.


Assuntos
Ansiedade/fisiopatologia , Dieta Hiperlipídica/psicologia , Medo/fisiologia , Envelhecimento/fisiologia , Tonsila do Cerebelo , Animais , Ansiedade/etiologia , Transtornos de Ansiedade , Encéfalo , Condicionamento Clássico , Dieta , Dieta Hiperlipídica/efeitos adversos , Extinção Psicológica/fisiologia , Aprendizagem , Masculino , Córtex Pré-Frontal , Ratos , Ratos Endogâmicos Lew , Reflexo de Sobressalto/fisiologia , Transtornos de Estresse Pós-Traumáticos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...